May 2, 2022 WAC/TAC Meeting Agenda Item 7

Challenging today. Reinventing tomorrow.

Sonoma Water Regional Water Supply Resiliency Study

Accelerated Drought Resiliency Update Water Advisory Committee May 2, 2022

Meeting Agenda

- Resiliency Study Overview
- Accelerated Near-Term Drought Resiliency Analysis
- Findings and Recommendations
- Resiliency Study Next Steps
- Q&A

Project Overview

Complex Inter-Connected System

Sonoma Water Resiliency Study

- Resiliency Study seeks to:
 - identify the key factors impacting regional water supply resiliency,
 - evaluate the current levels of resiliency,
 - develop a decision support framework model and process, and
 - identify promising opportunities for Sonoma Water and its retail customers to improve regional resilience in the future
- First of a kind look at the <u>Integrated</u> Regional System
 - Russian River & Potter Valley Project (Eel River)
 - Sonoma Water "backbone" system
 - 9 retail customer systems
 - 6 groundwater basins
 - local supplies and recycled water
 - multiple risk drivers
 - decision support model

Resiliency Study Project Overview

PHASE 1: Work Plan and Scoping Document

PHASE 2:

Development and Implementation of Decision Support Tool

	PHASE 3:	
	Modification and Main of Decision Suppor	ntenance rt Tool
6 -9 months	18 months	24 months

Accelerated Study to Evaluate Drought Resilience

Ranking Risk Drivers

Initial Sonoma Water Survey of Driving Forces Affecting Regional Water Supply Resiliency (ranking of drivers by importance and uncertainty, Project Team Responses Only)

Figure 4. Average Results for the Risk Driver Survey Conducted by Project Team Members (*Note: 111 and 112 risk drivers were not included in the initial survey and are thus not shown in the graphic*).

No.	Risk Driver	Risk Type	Phase of Study
N1	Wildfire	Sudden	Phase 2
N2	Earthquake	Sudden	Phase 2
N3	Drought	Sudden/Gradual	Phase 2
N4	Russian River Water Quality Contamination	Sudden	Phase 2
N5	Power Loss	Sudden	Phase 2
N6	Flooding	Sudden	Phase 2
N7	Sea Level Rise	Gradual	TBD
N8	Local Source Water Quality Contamination	Sudden	Phase 2
P3	Rapid Demand Growth	Sudden/Gradual	Phase 2 (TBD)
R1	Potter Valley Project Uncertainty (seismic/regulatory)	Sudden/Gradual	Phase 2
R2	New Russian River Treatment Regulations	Gradual	TBD
R5	SGMA Impacts on Groundwater Supply (City of Sonoma/VOMWD)	Gradual	Phase 2 (TBD)
R6	Changing Biological Opinions	Gradual	TBD
15	Groundwater Well Operational Failures	Sudden	Phase 2
16	Aging Infrastructure	Sudden/Gradual	Phase 2
111	COVID 19 Workforce Response	Sudden/Gradual	TBD
112	Operational Control Systems Disruption	Sudden	Phase 2

Future Baseline Projections

Sonoma County Water Year Average Temperature and Total Precipitation Anomaly (1886-2021)

Future Baseline Simulations

- Assumptions
 - Conditions as of Nov 1, Dec 1, and Jan 1
 - <u>No Actions</u> taken to mitigate drought impacts
 - UWMP demand assumptions
 - Historical hydrology 1910-2017
 - 5-year future simulations: WY 2022-2026
- Stochastic Simulations
 - Simulations using 108 traces of historical hydrology
 - Index sequential method maintains the hydrological sequences of the past
 - Probabilities of storage and shortage conditions derived from traces
- Stress Test Hydrology
 - WY 1976-980 hydrology represents the most severe conditions in the historical record
 - Represents a severe 2-year drought following the current 2-years of drought (2020-2021)
 - Used as stress test hydrology for evaluating the resilience of the system and management actions

Lake Sonoma Storage – Probabilities from 108 Historical Hydrological Traces

Lake Sonoma Storage

Scenario does NOT include any actions to mitigate drought impacts

MMWD Storage – Probabilities from 108 Historical Hydrological Traces

MMWD Reservoir Storage

13

Lake Sonoma Storage – WY 1976-1980 Stress Test Hydrology Lake Sonoma Storage

Scenario does NOT include any actions to mitigate drought impacts

14

Near-Term Drought Risk has Lessened, but Not Eliminated

- Outlook improved with December storms, but dry spring and likely continual dry conditions in 2022 suggest drought risk is still a possibility
- Action is still needed to address residual risks of a continued dry seasonal outlook

Initial Storage Conditions	NO ACTION Projected 5-Year Shortage Total	Shortage as % of Sonoma Water Delivery*	Shortage as % of Total Water Demand*
Nov 1, 2021	25,600 AF	25%	13%
Dec 1, 2021	23,200 AF	23%	12%
Jan 1, 2022	6,900 AF	7%	4%

* Percentages estimated from shortage and delivery over the critical 2-year period of 2023-2024

Drought Management Options

Survey of Range of Drought Management Options

- Jacobs met with most retail customers to develop ideas on range of drought management options
- Synthesized options into 4 major categories
 - Increase supply
 - Reduce demand
 - Improve operations
 - Modify policy and regulations

Synthesis of Drought Water Management Options

- Increase Supply
 - Increase groundwater production (new or rehabilitated wells)
 - Winter water diversion
 - Regional groundwater bank (Santa Rosa Plain, Sonoma Valley, Petaluma)
 - Alexander Valley FloodMAR
 - Sonoma Developmental Center water supply and forebay for groundwater recharge
 - Expand recycled water supply
 - Ocean desalination and/or brackish water desalination
 - Interconnection with Bay Area supplies (water transfers)

Reduce Demand

- Water conservation and water use efficiency in agricultural, municipal, and CII sectors

Improve Operations

- Kastania Pump Station improvements
- Expand surface storage (Lake Stafford weir, sediment removal)
- Lake Sonoma Forecast Informed Reservoir Operations (FIRO)
- Increase recycled water storage
- Storage operational management levels
- Lake Mendocino variable gates and outlet channel improvements
- Modify Policy and Regulations
 - Regulatory flexibility through TUCPs

Near-Term Drought Resiliency/Response Actions

- Maximize delivery of natural flows from Russian River system
- Kastania Pump Station rehabilitation
- Increase groundwater production (Sonoma Water)
- Increase groundwater production (Retail Customers)
- Regulatory flexibility through TUCPs
- Water conservation and water use efficiency (Retail Customers and diverters)

Lake Sonoma – WY 1976-1980 Stress Test Hydrology

Lake Sonoma Storage

MMWD Storage – WY 1976-1980 Stress Test Hydrology

MMWD Reservoir Storage

Simulation Results – Near-Term Package Resolves Stress Test Shortages

JAN 1, 2022 INITIAL CONDITIONS

Summary of Projected Shortages over Period 2022-2026 Using 1976-80 Stress Test Hydrology

Planning for Longer-Term Droughts

- Early Actions Offer Immediate Opportunities for Resiliency Benefits
 - Water conservation
 - Flexibility through TUCPs
 - Increasing groundwater production (Sonoma Water and Retail Customers)
 - Kastania Pump Station improvements
- Longer-Term Actions Offer Potential for Resiliency during Prolonged, Extreme Droughts
 - Lake Sonoma FIRO
 - Regional groundwater bank
 - Expand winter water diversion
 - SDC water supply
 - Ocean and brackish Desalination
 - Water transfers with Bay Area water agencies
 - Expand surface storage
 - Expand recycled water supply
 - Alexander Valley Flood-Managed Aquifer Recharge

Summary and Recommendations

- Drought Risks
 - Existing hydrologic conditions continue to be challenging
 - December storms have altered near-term drought outlook
 - Unlikely, but possible risk to Lake Mendocino storage and Lake Sonoma storage (2023), and delivery (2023-24)
 - Stress test hydrology of WY 1976-1980 is used to test drought options
- Drought Management Options
 - "Near-term" package of options (increasing Sonoma Water and retail customer groundwater production, increasing diversion of winter water with Kastania PS improvements, regulatory flexibility through TUCPs, and water conservation) provides sufficient capability to address the potential for critically low storage conditions.
 - For the scenarios analyzed, the near-term package of options eliminates stress-test shortages with moderate levels of water conservation
 - Winter water diversions, water conservation, and groundwater production helps reduce shortages and can bolster or save storage in reservoirs
 - Conservation and regulatory flexibility under TUCPs are the most important in bolstering Lake Sonoma and Mendocino storage
 - Longer-term actions of regional groundwater bank and Lake Sonoma FIRO will provide significant benefit for future droughts but require initial wet period to begin storage phase

Next Steps

Next Steps

- Further review of long-term drought management strategies
- Continue with assessment of resiliency in response to other identified risks
 - Seismic
 - Update of Sonoma Water Natural Hazard Reliability Assessment
 - Wildfire
 - Wildfire Resilience Decision Support Framework
 - Power
 - Water Quality
 - On-going riverbank filtration research